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Abstract. The order–disorder transition in a bilayerJ1–J2 model (with interlayer couplingJ0)
is studied by a bond-operator mean-field method. The phase diagram is obtained. On the Néel
phase side, the critical interlayer couplingJ c0 decreases linearly with increasing frustrationJ2 for
J2 6 0.2J1 and extends down to zero at aboutJ2 ' 0.38J1. On the collinear phase side,J c0 also
exhibits a linear decrease with decreasingJ2 for J2 > 1.0J1 and extends down to zero at about
J2 ' 0.60J1. The sublattice magnetizations of both the Néel phase and the collinear phase are
calculated. Near the phase boundary, we haveM ∝ (J c0 − J0)

1/2. The low-temperature quantum
critical properties obtained are in agreement with those of the O(3) nonlinearσ -model.

1. Introduction

It has been suggested that the unusual normal-state magnetic properties of underdoped
YBa2Cu3O6+x are due to its lying close to the zero-temperature order–disorder transition
occurring in a model of two antiferromagnetically coupled planes of antiferromagnetically
correlated spins (i.e., the bilayer Heisenberg antiferromagnet) [1]. Although the model captures
the main physics of the material as regards its magnetic properties, the critical ratios of
interlayer versus intralayer couplings that are obtained are too large (∼2.5) compared with
the experimental results (∼0.1) [2, 3]. A realistic theory must incorporate itinerant carriers,
which strongly suppress the magnetism. It has been pointed out that the magnetic effect of
itinerant charge carriers can be studied by introducing frustrations into the bilayer Heisenberg
antiferromagnet [4–6], since one may formally integrate out the charge degree of freedom and
obtain an effective spin Hamiltonian with further-neighbour interactions [7]. We will consider
here only the next-nearest-neighbour interactions for simplicity.

The two-layer, spin-1/2, frustrated Heisenberg antiferromagnet (i.e., the bilayerJ1–J2

model) is described by

H = J0

∑
i

S1,iS2,i + J1

∑
a,〈i,j〉

Sa,iSa,j + J2

∑
a,〈i,j〉′

Sa,iSa,j . (1)

Here, a = 1, 2 denotes the two layers;〈i, j〉 and 〈i, j〉′ are pairs of nearest and next-
nearest neighbours in a square lattice.J0, J1, J2 are all antiferromagnetic, and denote the
interlayer coupling and the nearest and next-nearest intralayer couplings, respectively. The
order–disorder transitions are determined by bothJ0/J1 andJ2/J1.

Groset al considered a long-range version of this model [4]. They found that the critical
interlayer couplingJ c0 is reduced linearly with the in-plane frustrationJ2. Dotsenko used an
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effective-action approach to study the model [5]. For values of the interlayer coupling that
are not very small, the effective action of the model can be reduced to that of the quantum
O(3) nonlinearσ -model (NLSM). The critical value of the interlayer coupling was found to
decrease linearly with the intralayer frustration. Hida obtained a qualitative phase diagram
using the modified spin-wave theory [6]. The sublattice magnetizations of both the Néel and
collinear phases are calculated.

We study the bilayerJ1–J2 model by a bond-operator mean-field method. The bond-
operator representation of this model includes the longitudinal spin fluctuations [8], and mean-
field theory is able to give a good description of the zero-temperature order–disorder transition
and low-temperature quantum critical properties. We use the bond-operator mean-field method
to compute the spectrum and spin gap of the model for the disordered phase, and the spectrum
and sublattice magnetizations for the ordered phases. The phase diagram is obtained. On the
Néel phase side, the critical interlayer couplingJ c0 ' 2.29J1 at vanishingJ2 and it decreases
linearly with increasingJ2 for J2 6 0.2J1. On the collinear phase side,J c0 ' 3.13J1 at
J2 = 1.5J1 and it also exhibits a linear decrease with decreasingJ2 for J2 > 1.0J1. Extending
to J0 = 0, we get a nonmagnetic intermediate phase in the region 0.38J1 < J2 < 0.60J1

between the Ńeel phase and the collinear phase, consistent with the exact-diagonalization and
series expansion results for theJ1–J2 model [9,10]. Near the phase boundaries in the ordered
phases, the staggered and collinear magnetizations

M ∝ (J c0 − J0)
1/2

indicate that the phase transitions are second order. Along the Néel phase boundary, the calc-
ulated spin-wave mass, uniform susceptibility and inverse correlation length exhibit linear
behaviours versus temperature at low temperature, which are in good agreement with the O(3)
NLSM predictions.

The outline of the rest of the paper is as follows. In section 2 we first introduce the bond-
operator representation and then study theT = 0 order–disorder transition. The disordered
phase, Ńeel phase and collinear phase are discussed. In section 3 we discuss the quantum
critical properties at low temperatures. A summary is presented in section 4.

2. Order–disorder transition at zero temperature

We first introduce the bond-operator representation of quantum spins. For twoS = 1/2 spins,
S1 andS2, Sachdev and Bhatt [11] introduced four creation operators to represent the four
states in Hilbert space, i.e., the singlet state|s〉 and the three triplet states|tx〉, |ty〉 and|tz〉:

|s〉 = s†|0〉 = 1√
2
(|↑↓〉 − |↓↑〉)

|tx〉 = t†x |0〉 =
−1√

2
(|↑↑〉 − |↓↓〉)

|ty〉 = t†y |0〉 =
i√
2
(|↑↑〉 + |↓↓〉)

|tz〉 = t†z |0〉 =
1√
2
(|↑↓〉 + |↓↑〉)

(2)

where|0〉 is the vacuum state. With these definitions,S1 andS2 can be expressed as

Sα1 =
1

2
(s†tα + t†αs − iεαβγ t

†
βtγ )

Sα2 =
1

2
(−s†tα − t†αs − iεαβγ t

†
βtγ )

(3)



Order–disorder transition in a Heisenberg antiferromagnet 3177

whereα, β, γ take the valuesx, y, z, repeated indices are summed over andε is the totally
antisymmetric tensor. The restriction that the physical states are either singlets or triplets leads
to the constraint

s†s + t†αtα = 1. (4)

TheS = 1/2, SU(2) algebra of the spinsS1 andS2 can be reproduced withs andtα satisfying
the bosonic commutation relations.

Choosing adjacent spins from the two layers asS1 andS2, and using the bond-operator
representation [11,12], the Hamiltonian equation (1) can be written as

H = H0 +H1 +H2 (5)

where

H0 =
∑
i

J0

(
−3

4
s

†
i si +

1

4
t
†
iαtiα

)
− µi(s†

i si + t†iαtiα − 1)

H1 = J1

4

∑
i,δ

[s†
i s

†
i+δtiαti+δ,α + s†

i si+δtiαt
†
i+δ,α + h.c.]

+
J2

4

∑
i,δ′

[s†
i s

†
i+δ′ tiαti+δ′,α + s†

i si+δ′ tiαt
†
i+δ′,α + h.c.]

H2 = J1

4

∑
i,δ

−(1− δαβ)(t†iαt†i+δ,αtiβ ti+δ,β − t†iαt†i+δ,β ti+δ,αtiβ)

+
J2

4

∑
i,δ′
−(1− δαβ)(t†iαt†i+δ′,αtiβ ti+δ′,β − t†iαt†i+δ′,β ti+δ′,αtiβ).

A site-dependent chemical potentialµi is introduced to impose the constraint of equation (4).
δ andδ′ denote the nearest and next-nearest neighbours.

Under the bond-operator representation of this model, the disordered and ordered phases
are described as follows [11]:

(a) The dimerized phase. This is the magnetically disordered phase, with〈s〉 6= 0, 〈tα〉 = 0
and〈tαtβ〉 = Cδαβ .

(b) The magnetically ordered phase. Condensation of a singletα-boson leads to long-range
magnetic order, with〈tα〉 6= 0 and〈s〉 6= 0.

The wave vector and polarization of the mode at which thetα-bosons condense determine the
nature of the magnetic ordering.

2.1. The disordered phase

We solve the Hamiltonian of equation (5) by a mean-field approach. We take〈si〉 = 〈si+δ〉 =
〈si+δ′ 〉 = s̄, and replace the local constraintµi by a global oneµ in accordance with the
translational invariance of the system. Define four mean fieldsP ,Q, P ′ andQ′ as

P = 〈t†iαti+δ,α〉
Q = 〈t†iαt†i+δ,α〉
P ′ = 〈t†iαti+δ′,α〉
Q′ = 〈t†iαt†i+δ′,α〉

(6)
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whereα = x, y, z. In equation (6) repeated indices are not summed over. After performing a
Fourier transformation of the operators

ti,α = 1√
N

∑
k

tkαeik·ri

with N the number of dimers andk the wave vector, we obtain a mean-field Hamiltonian:

Hm(µ, s̄, P ,Q) = N
[(
−3

4
J0 − µ

)
s̄2 + 6J1(Q

2 − P 2) + 6J2(Q
′2 − P ′2) +µ

]
+
∑
k

3kt
†
kαtkα +1k(tkαt−kα + t†kαt

†
−kα) (7)

with

3k = J0

4
− µ + 2J1γ

(1)
k (s̄2 + 2P) + 2J2γ

(2)
k (s̄2 + 2P ′)

1k = J1γ
(1)
k (s̄2 − 2Q) + J2γ

(2)
k (s̄2 − 2Q′)

γ
(1)
k =

1

2
(coskx + cosky)

γ
(2)
k = coskx cosky.

(8)

We diagonalize the mean-field Hamiltonian by means of a Bogoliubov transformation

tkα = ukξkα + vkξ
†
−kα (9)

where theξkα are Bose operators. Then we obtain

Hm(µ, s̄) = N
[(
−3

4
J0s̄

2 − µs̄2 +µ

)
+ 6J1(Q

2 − P 2) + 6J2(Q
′2 − P ′2)

]
+

3

2

∑
k

(ωk −3k) +
∑
k

ωkξ
†
kαξkα (10)

with

ωk = [32
k − (21k)2]1/2. (11)

TheH2-term of equation (5) consists of four triplett-operators, which represent higher-
order fluctuations. We have checked that it makes only a small contribution to the final
results. For simplicity, we just present the results withoutH2; we do this by setting
P = Q = P ′ = Q′ = 0.

The parametersµ ands̄ are determined by the saddle-point equations

s̄2 = 5

2
− 3

N

∑
k

1√
1− 02

k

(
nk +

1

2

)

µ = −3

4
J0 +

6

N

∑
k

(1− 0k)(J1γ
(1)
k + J2γ

(2)
k )√

1− 02
k

(
nk +

1

2

) (12)

with 0k = 21k/3k and the Bose occupation numbernk = 1/(exp(ωk/T ) − 1). At T = 0,
we havenk = 0. At large enoughJ0, the spectrumωk is real and positive everywhere in the
Brillouin zone. ForJ1 > 2J2, the band minimum is atk = (π, π). This gives the spin gap
and the spin-wave velocity:

1 =
√(

J0

4
− µ

)(
J0

4
− µ− 4(J1− J2)s̄2

)

c =
√(

J0

4
− µ

)
(J1− 2J2)s̄2.

(13)
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However, forJ1 < 2J2, the band minimum is at(0, π), and the spin gap and spin-wave
velocities are

1 =
√(

J0

4
− µ

)(
J0

4
− µ− 4J2s̄2

)

cx =
√(

J0

4
− µ

)
(2J2 − J1)s̄2

cy =
√(

J0

4
− µ

)
(2J2 + J1)s̄2

(14)

whereCx andCy are spin-wave velocities on thex- andy-directions.
The spin gaps decrease with decreasingJ0 and approach zero at some particular value.

The1 = 0 condition is used to determine the critical value of the interlayer couplingJ c0 . The
phase diagram obtained is shown in figure 1. On the Néel phase side,J c0 ' 2.29 forJ2 = 0,
which is consistent with the corresponding quantum Monte Carlo (QMC) simulations and
series expansion results forJ c0 ∼ 2.5 [13–16]. The critical interlayer couplingJ c0 decreases
linearly with the in-plane frustrationJ2 for J2 6 0.2J1, while for J2 > 0.2J1, J c0 goes down
more sharply to zero at aboutJ2 ' 0.38J1. This is in agreement with the effective-action
approach that finds a linear decrease ofJ c0 with increase ofJ2 for J c0 not very small [5]. On
the collinear phase side, we getJ c0 ' 3.13J1 for J2 = 1.5J1, about half of the value obtained
from modified spin-wave theory [6]. Similarly,J c0 decreases linearly with decreasingJ2 for
J2 > 1.0J1 and approaches zero at aboutJ2 ' 0.60J1.

It has been shown that in the single-layerJ1–J2 model there exists a nonmagnetic inter-
mediate phase in the parameter region 0.4J1 < J2 < 0.6J1 between the Ńeel and collinear
phases [9, 10]. Interestingly enough, our calculations withJ0 extending to zero show that
the intermediate phase lies in the region 0.38J1 < J2 < 0.60J1, in agreement with the exact
results. The reliability of the result depends on the magnitude ofs̄2. In our self-consistent

Figure 1. The phase diagram of the bilayerJ1–J2 model. Dots and curves are results obtained for
the disordered phase and ordered phases, respectively.



3180 Deng-Ke Yu et al

calculations, we get̄s2 ∼ 0.5 at the critical points forJ0 = 0 (J c2 ' 0.38J1 on the Ńeel phase
side andJ c2 ' 0.60J1 on the collinear phase side), which is not very small compared with
s̄2 ∼ 0.8 at the critical point ofJ2 = 0 (J c0 ' 2.29J1).

2.2. The Ńeel ordered phase

To describe the Ńeel ordered phase, we condense thetz-operator for momentumk0 = (π, π),
with tkz = t̄ δk,k0 + t̃kz. The Hamiltonian can be written as

Hm(µ, s̄, t̄ ) = NE0 +
∑
k

[3k(t
†
kαtkα + t̃ †

kzt̃kz) +1k(tkαt−kα + t†kαt
†
−kα + t̃kzt̃−kz + t̃ †

kzt̃
†
−kz)]

(15)

with

E0 =
(
−3

4
J0 − µ

)
s̄2 +

(
J0

4
− µ

)
t̄ 2 − 4(J1− J2)s̄

2t̄ 2 +µ. (16)

The3k and1k are given by equation (8), but settingP = Q = P ′ = Q′ = 0, α = x, y,
k 6= k0 in the summation overz terms. Equation (15) can be diagonalized as follows:

Hm(µ, s̄, t̄ ) = NE0 +
3

2

∑
k

(ωk −3k) +
∑
k

ωk(ξ
†
kαξkα + η̃†

kη̃k) (17)

where

ωk =
√(

J0

4
− µ

)(
J0

4
− µ + 4s̄2(J1γ

(1)
k + J2γ

(2)
k )

)
has the same form as in the disordered phase.ξ

†
kαξkα are the transverse modes;η̃†

kη̃k is the
longitudinal mode, which is neglected by the spin-wave theory. Equation (17) shows that the
transverse modes and longitudinal mode are degenerate. This degeneracy may be lifted by
includingH2.

The saddle-point equation〈∂Hm/∂t̄ 〉 = 0 yields

µ = J0

4
− 4(J1− J2)s̄

2 (18)

which makes the excitation spectrum gapless, with

ωk = 4(J1− J2)s̄
2

√
1 +

J1γ
(1)
k + J2γ

(2)
k

J1− J2
. (19)

A nonvanishinḡt indicates the existence of long-range order, with the sublattice magnetization

M = 1

2
〈S1z − S2z〉 =

√
s̄2t̄ 2.

Self-consistent equations fors̄ and t̄ at T = 0 are obtained from〈∂Hm/∂µ〉 = 0 and
〈∂Hm/∂s̄〉 = 0:

s̄2 + t̄ 2 = Z1

s̄2 − t̄ 2 = J0

4(J1− J2)
+Z2

(20)
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Figure 2. Staggered magnetizations of the Néel phase with various values ofJ2.

with

Z1 = 5

2
− 3

2N

∑
k

1√
1− 02

k

Z2 = − 3

4N

1

J1− J2

∑
k

(1− 0k)(J1γ
(1)
k + J2γ

(2)
k )√

1− 02
k

0k = J1γ
(1)
k + J2γ

(2)
k

2(J1− J2) + J1γ
(1)
k + J2γ

(2)
k

.

(21)

The parametersZ1 andZ2 are determined byJ1 andJ2 only, and can be directly calculated.
We obtain

M = 1

2

√[
J0

4(J1− J2)
+ (Z1 +Z2)

][
− J0

4(J1− J2)
+ (Z1− Z2)

]
. (22)

By settingM = 0, we get the critical valueJ c0 = 4(J1 − J2)(Z1 − Z2), which is the
same as that obtained from the disordered phase. The phase transition is second order. Near
the critical point,M ∝ (J c0 − J0)

1/2. The staggered magnetizations with various values
of J2 are shown in figure 2. In general, the frustrationJ2 suppresses the long-range Néel
order. Spin-wave theory [6, 17] and other methods [8, 16, 18] show that a smallJ0 will make
the system more ‘classical’, and only at largerJ0 do quantum fluctuations push the system
towards the disordering transition. We cannot observe this because the magnetization obtained
drops monotonically withJ0. At J0 = 0, the sublattice magnetizations obtained are somewhat
larger than those obtained from the single-layerJ1–J2 model [10].

2.3. The collinear ordered phase

To describe the collinear ordered phase, we condense thetkz-operator for momentumk0 =
(0, π), with tkz = t̄ δk,k0 + t̃kz. The Hamiltonian has the same form of equation (15) as in the
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Néel phase, but withE0 given by

E0 =
(
−3

4
J0 − µ

)
s̄2 +

(
J0

4
− µ

)
t̄ 2 − 4J2s̄

2t̄ 2 +µ. (23)

The saddle-point equation〈∂Hm/∂t̄ 〉 = 0 yields

µ = J0

4
− 4J2s̄

2. (24)

Similarly, the saddle-point equation fort̄ makes the excitation spectrum gapless, with

ωk = 4J2s̄
2

√
1 +

J1γ
(1)
k + J2γ

(2)
k

J2
. (25)

The long-range order sets in with a nonvanishingt̄ . The transverse modes and longitudinal
mode are also degenerate. Self-consistent equations fors̄ andt̄ atT = 0 are

s̄2 + t̄ 2 = Z3

s̄2 − t̄ 2 = J0

4J2
+Z4

(26)

with

Z3 = 5

2
− 3

2N

∑
k

1√
1− 02

k

Z4 = − 3

4N

1

J2

∑
k

(1− 0k)(J1γ
(1)
k + J2γ

(2)
k )√

1− 02
k

0k = J1γ
(1)
k + J2γ

(2)
k

2J2 + J1γ
(1)
k + J2γ

(2)
k

.

(27)

Figure 3. Collinear magnetizations of the collinear phase with various values ofJ2.
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The parametersZ3 andZ4 can be directly calculated. We obtain

M = 1

2

√[
J0

4J2
+ (Z3 +Z4)

][
− J0

4J2
+ (Z3− Z4)

]
. (28)

The critical valueJ c0 = 4J2(Z1 − Z2) is also the same as that obtained from the dis-
ordered phase. The phase transition is also second order, withM ∝ (J c0 − J0)

1/2 near the
phase boundary. The collinear magnetizations with variousJ2 are shown in figure 3.

In general, spin-wave theories neglect longitudinal spin fluctuations and can yield reliable
results only at smallJ0/J1; the bond-operator mean-field theory is appropriate near the
transition point, but cannot give accurate results in the small-J0/J1 limit.

3. Quantum critical behaviour at low temperatures

We now discuss the low-temperature quantum critical properties for systems exactly at critical
points. The QMC simulations have shown that the critical properties of the (unfrustrated)
bilayer Heisenberg antiferromagnet are in good agreement with those of the O(3) NLSM [19].
For the bilayer frustrated Heisenberg antiferromagnet, it was shown that the effective action
derived from the microscopic Hamiltonian has the form of the O(3) NLSM for interlayer
couplings that are not very small. It is therefore reasonable that the critical properties of the
bilayer frustrated antiferromagnet are also described by the O(3) NLSM for those interlayer
couplings.

At finite temperatures, the systems are still described by the self-consistent equations (12).
We set the systems exactly at the critical points and setJ1 = 1.

The 1/N expansions of the NLSM predict that the spin-wave mass is a linear function of
temperature:m = 1.04T [19]. QMC simulations for the (unfrustrated) bilayer Heisenberg
antiferromagnet givem = 1.02T [13]. In our calculations, the spin-wave mass is given
by equation (13) on the Ńeel phase side and by equation (14) on the collinear phase side.
We find that the spin-wave masses show good linear behaviour versus temperature at low
temperatures. In the temperature regionT 6 0.3J1, we get on the Ńeel phase sidem/T =
0.983, 0.993, 1.009, 1.035, 1.062 for J2 = 0.0, 0.1, 0.2, 0.3, 0.372, respectively. The spin-
wave mass on the collinear phase side is similar. At low temperatures, we havem/T =
0.976, 0.992, 1.020 forJ2 = 1.5, 1.0, 0.8 respectively. At low temperatures, the spin-wave
velocities retain theirT = 0 values. At higher temperatures, they drop with temperature.

The uniform susceptibility per chemical unit cell is defined as [13]

χu = 1

NT

∑
ij

〈(Sz1,i + Sz2,i )(S
z
1,j + Sz2,j )〉.

ReplacingSzn,i andSzn,j (n = 1, 2) with the bond operators and using a procedure similar to
that used in modified spin-wave theory [20], we get

χu = 2

NT

∑
k

nk(nk + 1)

wherenk is the Bose occupation number. As is shown in figure 4, the uniform susceptibility
also exhibits linear behaviour at low temperatures. The uniform magnetic susceptibility given
by the NLSM [19] is

χu =
√

5

πc2
ln

(√
5 + 1

2

)(
8π

15
ρs + 0.7937T

)
(29)
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Figure 4. Uniform susceptibility versus temperature at the critical points with various values of
J2. Solid circles show the QMC results for theJ2 = 0 case [13].

Figure 5. Inverse correlation length versus temperature at the critical points with various values
of J2. Solid circles show the QMC results for theJ2 = 0 case [13].

with c the spin-wave velocity andρs the spin stiffness. At the critical point, whereρs = 0, we
should haveχu ∝ T . Fitting equation (29) in the temperature regionT 6 0.3J1, we get

χu ' Cχ
√

5

πc2
ln

(√
5 + 1

2

)
T (30)

with Cχ = 1.011, 1.010, 1.004, 0.979, 0.909 forJ2 = 0.0, 0.1, 0.2, 0.3, 0.372, respectively.
The coefficientCχ remains approximately constant for varyingJ2 and does not deviate far
from the NLSM result of 0.7937.
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The NLSM prediction for the inverse correlation length is also a linear function of the
temperature [19]:

ξ−1 = 1.0791× 2 ln

(√
5 + 1

2

)
T

c
− 4πρs

3
√

5c
. (31)

Exactly at the critical point,ξ−1 ∝ T . We extractξ from the correlation function〈Sz1iSz1j 〉 [13]
and get

ξ−1 = m/c.
As shown in figure 5, the inverse correlation length obtained also maintains good linear
behaviour at low temperatures. Fitting equation (31) in the temperature regionT 6 0.3J1, we
get

ξ−1 ' Cξ × 2 ln

(√
5 + 1

2

)
T

c
(32)

with Cξ = 1.023, 1.035, 1.055, 1.094, 1.165 forJ2 = 0.0, 0.1, 0.2, 0.3, 0.372 respectively.
Cξ remains constant for varyingJ2 and is in good agreement with that from NLSM predictions.

4. Summary

In this paper we have studied the bilayer frustrated Heisenberg antiferromagnet using a bond-
operator mean-field method. This method takes into account the longitudinal spin fluctuations
neglected by spin-wave theories; therefore it is able to give a more reasonable description
of the zero-temperature order–disorder transition and the low-temperature quantum critical
properties. A phase diagram is obtained. On the Néel phase side, the critical interlayer
couplingJ c0 decreases linearly with increasing frustrationJ2 for J2 6 0.2J1 and extends down
to zero at aboutJ2 ' 0.38J1. On the collinear phase side,J c0 also exhibits a linear decrease
with decreasingJ2 for J2 > 1.0J1 and extends down to zero at aboutJ2 ' 0.60J1. The
sublattice magnetizations of both the Néel phase and the collinear phase are calculated. Near
the phase boundary, we haveM ∝ (J c0−J0)

1/2. Along the Ńeel phase boundary, the calculated
spin-wave mass, uniform susceptibility and inverse correlation length exhibit linear behaviour
versus temperature at low temperatures, in good agreement with the O(3) nonlinearσ -model
predictions.
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