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Abstract. The order—disorder transition in a bilay@r—J> model (with interlayer couplingp)

is studied by a bond-operator mean-field method. The phase diagram is obtained. Giekthe N
phase side, the critical interlayer couplirig decreases linearly with increasing frustratigrfor

J2 £ 0.2J; and extends down to zero at abodt~ 0.38/1. On the collinear phase sid&; also
exhibits a linear decrease with decreasihgor J» > 1.0J; and extends down to zero at about
Jo >~ 0.60J;. The sublattice magnetizations of both théé\phase and the collinear phase are
calculated. Near the phase boundary, we hevec (Jg — Jo)Y2. The low-temperature quantum
critical properties obtained are in agreement with those of the O(3) nontingardel.

1. Introduction

It has been suggested that the unusual normal-state magnetic properties of underdoped
YBa,CuzOg., are due to its lying close to the zero-temperature order—disorder transition
occurring in a model of two antiferromagnetically coupled planes of antiferromagnetically
correlated spins (i.e., the bilayer Heisenberg antiferromagnet) [1]. Althoughthe model captures
the main physics of the material as regards its magnetic properties, the critical ratios of
interlayer versus intralayer couplings that are obtained are too larg&) compared with
the experimental results-Q.1) [2, 3]. A realistic theory must incorporate itinerant carriers,
which strongly suppress the magnetism. It has been pointed out that the magnetic effect of
itinerant charge carriers can be studied by introducing frustrations into the bilayer Heisenberg
antiferromagnet [4-6], since one may formally integrate out the charge degree of freedom and
obtain an effective spin Hamiltonian with further-neighbour interactions [7]. We will consider
here only the next-nearest-neighbour interactions for simplicity.

The two-layer, spin-1/2, frustrated Heisenberg antiferromagnet (i.e., the bilayér
model) is described by

H=J Z $1i82, +J1 ;) SaiSaj+J2 ;) SuiSaj- 1)
i a,(i,j a,(i,j

Here,a = 1,2 denotes the two layersy, j) and (i, j)’ are pairs of nearest and next-
nearest neighbours in a square lattick, J1, J> are all antiferromagnetic, and denote the
interlayer coupling and the nearest and next-nearest intralayer couplings, respectively. The
order—disorder transitions are determined by by, andJ,/ J;.

Groset al considered a long-range version of this model [4]. They found that the critical
interlayer coupling/y is reduced linearly with the in-plane frustratign Dotsenko used an
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effective-action approach to study the model [5]. For values of the interlayer coupling that
are not very small, the effective action of the model can be reduced to that of the quantum
O(3) nonlineats-model (NLSM). The critical value of the interlayer coupling was found to
decrease linearly with the intralayer frustration. Hida obtained a qualitative phase diagram
using the modified spin-wave theory [6]. The sublattice magnetizations of bothéibleaNd
collinear phases are calculated.

We study the bilayet;—J, model by a bond-operator mean-field method. The bond-
operator representation of this model includes the longitudinal spin fluctuations [8], and mean-
field theory is able to give a good description of the zero-temperature order—disorder transition
and low-temperature quantum critical properties. We use the bond-operator mean-field method
to compute the spectrum and spin gap of the model for the disordered phase, and the spectrum
and sublattice magnetizations for the ordered phases. The phase diagram is obtained. On the
Neéel phase side, the critical interlayer coupliffg~ 2.29J; at vanishing/, and it decreases
linearly with increasing/, for J, < 0.2/:. On the collinear phase siddy; ~ 3.13J; at
J> = 1.5J; and it also exhibits a linear decrease with decreagjrigr J, > 1.0J;. Extending
to Jo = 0, we get a nonmagnetic intermediate phase in the regi®®/p < J, < 0.60J;
between the Bel phase and the collinear phase, consistent with the exact-diagonalization and
series expansion results for thig-J, model [9, 10]. Near the phase boundaries in the ordered
phases, the staggered and collinear magnetizations

M o (J§ — Jo)M?

indicate that the phase transitions are second order. Alongébgptiase boundary, the calc-
ulated spin-wave mass, uniform susceptibility and inverse correlation length exhibit linear
behaviours versus temperature at low temperature, which are in good agreement with the O(3)
NLSM predictions.

The outline of the rest of the paper is as follows. In section 2 we first introduce the bond-
operator representation and then studyfhe- 0 order—disorder transition. The disordered
phase, Nel phase and collinear phase are discussed. In section 3 we discuss the quantum
critical properties at low temperatures. A summary is presented in section 4.

2. Order—disorder transition at zero temperature

We first introduce the bond-operator representation of quantum spins. F8r$wty?2 spins,
S1 and S,, Sachdev and Bhatt [11] introduced four creation operators to represent the four
states in Hilbert space, i.e., the singlet stajeand the three triplet statés), |z,) and|z;):

ls) = sT10) = %Zuw — 1)

-1
) =1]10) = —=(11) — 144D

v2 )
lty) = t;f|0) = TZ(ITN + )
It.) = t]10) = %uw +141)

where|0) is the vacuum state. With these definitioSs,and.S, can be expressed as
S = %(sTta +1]s — i€apythty)
©))

1 o
S = E(_‘Y% — 115 — i€apytyty)
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wherec, 8, y take the values, y, z, repeated indices are summed over arisl the totally
antisymmetric tensor. The restriction that the physical states are either singlets or triplets leads
to the constraint

sTs + tgta =1 (4)

TheS = 1/2, SU(2) algebra of the spir and.S, can be reproduced withandz, satisfying
the bosonic commutation relations.

Choosing adjacent spins from the two layersSagnd S,, and using the bond-operator
representation [11, 12], the Hamiltonian equation (1) can be written as

o or (5)
where
1. " "
HO = Z JO _—S Sl 4tw¢tla — I,Ll-(si s; + tiatia _ 1)
Jl Tt + +
H; = 1 Z[Si Sirslialivs,a T 8; Sivslialivs o T h.c.]

i,8

t t
Z[Sl Ststialisg o + 5, Sisslialivg o + N.C
i,

S
||

Tt
Z (L= 8ap) (115 oliplivs.p — iylivs glivs.alip)

J2 tot
* Z Z (l 5055)( z+6’ tlﬁtl+5/ B — t tl+5/ ﬂt1+5’ attﬁ)
i,8

A site-dependent chemical potentiglis introduced to impose the constraint of equation (4).
§ ands’ denote the nearest and next-nearest neighbours.

Under the bond-operator representation of this model, the disordered and ordered phases
are described as follows [11]:

(a) The dimerized phase€This is the magnetically disordered phase, with=£ 0, (z,) = 0
and(tytg) = Cdyp.

(b) The magnetically ordered phas€ondensation of a singlg-boson leads to long-range
magnetic order, withit,) # 0 and(s) # 0.

The wave vector and polarization of the mode at whichrjHegosons condense determine the
nature of the magnetic ordering.

2.1. The disordered phase

We solve the Hamiltonian of equation (5) by a mean-field approach. Wedgke (s;+s) =
(si+s') = §, and replace the local constrainf by a global oneu in accordance with the
translational invariance of the system. Define four mean field®, P’ andQ’ as

P=<f,Tal‘i+aa)
Q= (11t
P’ (l s o)
Q' = (thtly )

(6)
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wherea = x, y, z. In equation (6) repeated indices are not summed over. After performing a
Fourier transformation of the operators

1 .
ti,a = \/_N ; tkaelk-rz
with N the number of dimers anklthe wave vector, we obtain a mean-field Hamiltonian:

H, (1.5, P, Q) = N[(—%Jo - u)sz +6J1(Q% — P +6J2(Q° — P + u}

T Tt
D Al Aklkal ke * 1t 1) ™
k

with
J
Aj = _: — w+ 201y P (52 + 2P) + 20572 (5% + 2P')

Ay = hy P (5% = 20) + Ly 5% — 20 @)
1
yb = 5 (cosk, +cosk,)

Y2 = cosk, cosk,.

We diagonalize the mean-field Hamiltonian by means of a Bogoliubov transformation
fha = UkEka + Vi pe )
where thet,, are Bose operators. Then we obtain

Hy (i, 5) = N[<—§JO§2 — 5+ u) +6J1(0% — P +6/,(Q7% - P’z)]

3
+ > Z(wk —Ap) + Zwk&:&&ka (10)
% %

with
o = [Af — 2Ap)?]Y2. (11)

The H,-term of equation (5) consists of four triplebperators, which represent higher-
order fluctuations. We have checked that it makes only a small contribution to the final
results. For simplicity, we just present the results withéy we do this by setting
P=Q=P =0 =0.

The parameterg ands are determined by the saddle-point equations

-, 5 3 1 ( 1
2=z —— —nk+—)
2 N;M—rg 2
3 +62(1—rk)<11y,i”+12y,§2>)< 1)

np+ =
4 N 5 J1-T2

2
with Ty, = 2A /A and the Bose occupation numbgr = 1/(explwy/T) — 1). At T =0,
we haven,, = 0. At large enoughly, the spectrunay, is real and positive everywhere in the
Brillouin zone. ForJ; > 2J5, the band minimum is @& = (r, 7). This gives the spin gap
and the spin-wave velocity:

J J
A =\/(Z° —u)(f — =4 — Jz>52>
Cc = \/(% - ,LL> (]1 - 2.]2)52.

12)

(13)
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However, forJ; < 2J,, the band minimum is at0, =), and the spin gap and spin-wave
velocities are

J J
AZ/(Z““)(ZO‘“‘“Z“)
Jo _
Cy = \/(Z — ;,L) (2J, — J1)52 (14)

¢y = / (% - u) (242 + 1))

whereC, andC, are spin-wave velocities on the andy-directions.

The spin gaps decrease with decreasin@nd approach zero at some particular value.
The A = 0 condition is used to determine the critical value of the interlayer coupgljndhe
phase diagram obtained is shown in figure 1. On tkellphase sidel§ ~ 2.29 for J, = 0,
which is consistent with the corresponding quantum Monte Carlo (QMC) simulations and
series expansion results fé§ ~ 2.5 [13-16]. The critical interlayer couplings decreases
linearly with the in-plane frustratiod for J> < 0.2J;, while for J> > 0.2J;, J§ goes down
more sharply to zero at about ~ 0.38J;. This is in agreement with the effective-action
approach that finds a linear decreasg/pivith increase ot/, for J§ not very small [5]. On
the collinear phase side, we ggt ~ 3.13J; for J, = 1.5/4, about half of the value obtained
from modified spin-wave theory [6]. Similarly§ decreases linearly with decreasigfor
J> > 1.0J; and approaches zero at abdyut~ 0.60/;.

It has been shown that in the single-laylerJ> model there exists a nonmagnetic inter-
mediate phase in the parameter regiof/@ < J, < 0.6J; between the Bel and collinear
phases [9, 10]. Interestingly enough, our calculations wittextending to zero show that
the intermediate phase lies in the regioB8Y; < J, < 0.60J1, in agreement with the exact
results. The reliability of the result depends on the magnitude.oin our self-consistent

35 ¢

25 Disordered Phase

Jo/J 1

AEYAR

Figure 1. The phase diagram of the bilay&i—J> model. Dots and curves are results obtained for
the disordered phase and ordered phases, respectively.
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calculations, we ge¥* ~ 0.5 at the critical points forp = 0 (J5 ~ 0.38/; on the Neel phase
side and/; ~ 0.60/; on the collinear phase side), which is not very small compared with
52 ~ 0.8 at the critical point of/, = 0 (J§ ~ 2.29J;).

2.2. The Nel ordered phase

To describe the Bel ordered phase, we condensertheperator for momenturkg = (7, ),
with ., = 18; 4, *+ fx.- The Hamiltonian can be written as

H,(u,5,1) = NEo+ Z[Ak(l;afka + fszsz) + Ap(tpal—go + l,;ralika + gl gy + fszfij)]
) (15)
with
Eo = <—ZJO - u>§2 (% — u)fz —A(Jy — Jo)5% T2 + . (16)

The A, and Ay, are given by equation (8), but settilj= Q = P = Q' = 0, = x, y,
k # ko in the summation over terms. Equation (15) can be diagonalized as follows:

_ 3 1 ~
Hy(u.5.0) = NEo+ 5 ) (@ = M) + ) oo + i) (17)
k k

J J _
W = \/(ZO - H) (ZO — 1+ 42y + Jzyiiz)))

has the same form as in the disordered pha;%gka are the transverse mode”ﬁ;'ﬁk is the
longitudinal mode, which is neglected by the spin-wave theory. Equation (17) shows that the
transverse modes and longitudinal mode are degenerate. This degeneracy may be lifted by
including H,.

The saddle-point equatiaid H,, /9t ) = 0 yields

where

J _
u=f—«h—m¥ (18)

which makes the excitation spectrum gapless, with

2
Iy + By

1
A (19)

w = 41 — JZ)EZ\/ 1+
A nonvanishing indicates the existence of long-range order, with the sublattice magnetization
M = %(Slz — S,,) = 5212,
Self-consistent equations férandz at T = 0 are obtained from{o H,,/d.) = 0 and
(0H,,/35) = 0:

§2 +t_2 =71
-2 72 _ Jo + 75 (20)
4(J1 — J2)
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Figure 2. Staggered magnetizations of thé@l phase with various values &f.

with
3

zzv;ﬁ

(1 — TRy + Ly?)

4N J1— ng /1_1—~’%

Ny + Ly
T 20— R+ Iy O+ Iy

The parameterg; andZ, are determined by; andJ, only, and can be directly calculated.
We obtain

I\)IO‘I

Zy = (21)

_ 1 Jo Jo
M= \/[—4(J1 _— (Zy+ Zz)} [——4(J1 — (Z1— Zz)}- (22)

By settingM = 0, we get the critical valudg = 4(J1 — J2)(Z1 — Z»), which is the
same as that obtained from the disordered phase. The phase transition is second order. Near
the critical point, M o (J§ — Jo)¥/?. The staggered magnetizations with various values
of J, are shown in figure 2. In general, the frustratibnsuppresses the long-rangeél
order. Spin-wave theory [6,17] and other methods [8, 16, 18] show that a &maill make
the system more ‘classical’, and only at largigrdo quantum fluctuations push the system
towards the disordering transition. We cannot observe this because the magnetization obtained
drops monotonically withlp. At Jo = 0, the sublattice magnetizations obtained are somewhat
larger than those obtained from the single-layger/, model [10].

2.3. The collinear ordered phase

To describe the collinear ordered phase, we condensg toperator for momenturky =
(0, ), with 1, = 78 4, *+ fx.. The Hamiltonian has the same form of equation (15) as in the
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Néel phase, but witlty given by
3 Ji _ _
Eo= (—ZJO—M>§2+(ZO—,u>t2—412§2t2+u. (23)

The saddle-point equatiaid H,, /9t ) = 0 yields

J
w="22—an. (24)
4
Similarly, the saddle-point equation fomakes the excitation spectrum gapless, with
Ty D g 0@
o = a1 20 =
2

The long-range order sets in with a nonvanishingrhe transverse modes and longitudinal
mode are also degenerate. Self-consistent equatiofsafwlz at7 = 0 are

S2+t_2—Z3
o - Jo (26)
2 2
—t°=—+7Z
: 4p
with
5 3 1
Z3:§_ﬁz—
k /1-T2
i= - Ly o1 + 2y, 27)
AN J2 J1-T2

2+

Ty = :
2J, + leél) + Jzyliz)

I
—_
(9]

Collinear Magnetization M
f=]
[\8}

<
=

0.05 |

O:\\\\\\\‘M\\\\\\\\\‘\\\\\\\\\\\\\\\\\
0 05 1 15 2 25 3 35

Jo/Jq

Figure 3. Collinear magnetizations of the collinear phase with various valuds.of
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The parametergs; andZ, can be directly calculated. We obtain

1 g Jo
M = 5\/[472 +(Z3+ Z4)} [_4_12 + (23— Z4)}. (28)

The critical valueJ§ = 4J>(Zy — Z») is also the same as that obtained from the dis-
ordered phase. The phase transition is also second orderMvith (J§ — Jo)Y? near the
phase boundary. The collinear magnetizations with varibuse shown in figure 3.

In general, spin-wave theories neglect longitudinal spin fluctuations and can yield reliable
results only at small/y/J;; the bond-operator mean-field theory is appropriate near the
transition point, but cannot give accurate results in the sl limit.

3. Quantum critical behaviour at low temperatures

We now discuss the low-temperature quantum critical properties for systems exactly at critical
points. The QMC simulations have shown that the critical properties of the (unfrustrated)
bilayer Heisenberg antiferromagnet are in good agreement with those of the O(3) NLSM [19].
For the bilayer frustrated Heisenberg antiferromagnet, it was shown that the effective action
derived from the microscopic Hamiltonian has the form of the O(3) NLSM for interlayer
couplings that are not very small. It is therefore reasonable that the critical properties of the
bilayer frustrated antiferromagnet are also described by the O(3) NLSM for those interlayer
couplings.

Atfinite temperatures, the systems are still described by the self-consistent equations (12).
We set the systems exactly at the critical points and'set 1.

The 1/N expansions of the NLSM predict that the spin-wave mass is a linear function of
temperaturemm = 1.04T [19]. QMC simulations for the (unfrustrated) bilayer Heisenberg
antiferromagnet given = 1.027 [13]. In our calculations, the spin-wave mass is given
by equation (13) on the &kl phase side and by equation (14) on the collinear phase side.
We find that the spin-wave masses show good linear behaviour versus temperature at low
temperatures. In the temperature regior< 0.3J1, we get on the Hel phase side:/T =
0.983 0.993 1.009, 1.035, 1.062 for J, = 0.0,0.1, 0.2, 0.3, 0.372, respectively. The spin-
wave mass on the collinear phase side is similar. At low temperatures, wentidve=
0.976 0.992 1.020 for J, = 1.5, 1.0, 0.8 respectively. At low temperatures, the spin-wave
velocities retain theif” = 0 values. At higher temperatures, they drop with temperature.

The uniform susceptibility per chemical unit cell is defined as [13]

1

Xu = s DS+ S50(51;+5)).
ij

Replacings, ; andS, ; (» = 1, 2) with the bond operators and using a procedure similar to
that used in modified spin-wave theory [20], we get

2
Xu = 3r Zk:nk(nk +1)

wheren,, is the Bose occupation number. As is shown in figure 4, the uniform susceptibility
also exhibits linear behaviour at low temperatures. The uniform magnetic susceptibility given
by the NLSM [19] is

5 5+1\/8
Xu = iz In <*/_—) (—”ps + o.7937r) (29)
e 2 15
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Figure 4. Uniform susceptibility versus temperature at the critical points with various values of
J». Solid circles show the QMC results for thig = 0 case [13].
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Figure 5. Inverse correlation length versus temperature at the critical points with various values
of J». Solid circles show the QMC results for thie = 0 case [13].

with ¢ the spin-wave velocity ang; the spin stiffness. At the critical point, whepe = 0, we
should haveg, « T. Fitting equation (29) in the temperature regibr 0.3J;, we get
V5, (VB+1
= C— | T
X ‘2" ( 2 )
with C, = 1.011 1.010 1.004, 0.979 0.909 for J, = 0.0,0.1, 0.2, 0.3, 0.372, respectively.

The coefficientC, remains approximately constant for varyidg and does not deviate far
from the NLSM result of 07937.

(30)
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The NLSM prediction for the inverse correlation length is also a linear function of the
temperature [19]:

(1)

5+1\T 4np,
§1=1.0791x2|n<f )— il

2 C - 3\/§C
Exactly at the critical poin ~ o« T. We extract from the correlation functioss, S1;) [13]
and get

e t=m/c.

As shown in figure 5, the inverse correlation length obtained also maintains good linear
behaviour at low temperatures. Fitting equation (31) in the temperature régio0.3J;, we
get

5+I\T
g—lzchzm(f ): (32)

2 c
with C¢ = 1.023 1.035 1.055 1.094 1.165 for J, = 0.0, 0.1, 0.2, 0.3, 0.372 respectively.
C: remains constant for varying and is in good agreement with that from NLSM predictions.

4. Summary

In this paper we have studied the bilayer frustrated Heisenberg antiferromagnet using a bond-
operator mean-field method. This method takes into account the longitudinal spin fluctuations
neglected by spin-wave theories; therefore it is able to give a more reasonable description
of the zero-temperature order—disorder transition and the low-temperature quantum critical
properties. A phase diagram is obtained. On tleelNphase side, the critical interlayer
couplingJg decreases linearly with increasing frustratibrior J, < 0.2J; and extends down

to zero at abouf, ~ 0.38J;. On the collinear phase sidg; also exhibits a linear decrease

with decreasing/, for J, > 1.0J; and extends down to zero at abolgt ~ 0.60J;. The
sublattice magnetizations of both thé® phase and the collinear phase are calculated. Near
the phase boundary, we halleo (J§— Jo)¥2. Along the Neel phase boundary, the calculated
spin-wave mass, uniform susceptibility and inverse correlation length exhibit linear behaviour
versus temperature at low temperatures, in good agreement with the O(3) noslimesatel
predictions.
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